
CS 4530: Fundamentals of Software Engineering
Module 7.2: Software Development Processes

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Know the basic characteristics of the waterfall software 
process model

• Be able to explain when the waterfall model is 
appropriate and when it is not

• Understand how the waterfall and agile models manage 
risk

• Be able to explain how agile process instill quality, 
including through test driven development

2



Review:
How to make sure we are building the right thing

3

Requirements 
Analysis

Planning & 
Design Implementation



Software Process: Code + Fix

4

Build First
Version

Retirement

Operations

Modify until
Customer satisfied



A brief history of software planning

5

•Software was very inefficient
•Software was of low quality
•Software often did not meet requirements
•Projects were unmanageable and code difficult to maintain
•Software was never delivered

A call to action: We 
must study how to 
build software

NATO conference on Software Engineering + Outcomes



Software Process: Waterfall (~1970)

6

systematic, sequential approach
Quality Assurance at each phase before 
continuing

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design



Waterfall Model: Risk Assumptions

7Communication Planning Modeling Cosntruction Deployment

Re
la

tiv
e 

Co
st

 to
 F

ix
 D

ef
ec

t

The cost to fix a defect grows exponentially with each development phase



Waterfall Process Improves on Code + Fix

• Measurable progress with risk contained in each 
phase

• Possible to estimate each phase based on past 
projects

• Division of labor: Natural segmentation between 
phases

8

Requirements

Validate

Retirement

Operations

Test

Implementation
Verify

Design



Waterfall Model 
adds process 
overhead

Since formal quality assurance 
happens at each phase, it’s 
necessary to produce extremely 
detailed…

• Requirements documents
• Design documents
• Source code with 

documentation

9



Waterfall Model 
Reduces Risk by 
Preventing 
Change

Traditional waterfall model: no way 
to go back “up”



Waterfall Model: Applications
• What projects would this work well in?

• Projects with tremendous uncertainty
• Projects with long time-to-market
• Projects that need extensive QA of requirements 

and design
• Projects for which the expense of the planning is 

worth it
• Classic examples: military/defense

• Warship that needs to have component interfaces last 80 
years

• Spacecraft?

11

Re
la

tiv
e 

Co
st

 to
 F

ix
 D

ef
ec

t



Waterfall Model produced Wasted Work 
Product
• Wasted productivity can occur through each 

phase’s QA process:
• Requirements that become obsolete
• Elaborate architectural designs never used
• Code that sits around not integrated and tested in 

production environment, eventually discarded
• Documentation produced per requirements, but 

never read
• What if we could eliminate that waste, and 

reduce the cost of defects later in 
development cycle?

• Example: with shorter time-to-market?

12

Re
la

tiv
e 

Co
st

 to
 F

ix
 D

ef
ec

t



Iterative Process (~1980s) are Waterfall 
Variations

13

Initial Concept

Operations

Acceptance 
Testing

and Delivery

Requirements 
and Iteration

Planning

Next Iteration

Design and
Implement 



The Agile Model Reduces Risk by Embracing 
Change (~2000)
• The Waterfall philosophy: 

• "The project is too large and complex, and it will take 
months (or years!) to plan, so once we come up with the 
plan, that plan can not change" 

• Reduce risk by proceeding in stages
• The Agile philosophy:

• The project is too large and complex, it is unlikely that 
we will know exactly what we need right now, and to 
some extent, we are inventing something new. We think 
that as we make it, we will figure it out as we go”

• Reduce risk by limiting time on any one stage; then 
reassess. (“time-boxing”)

14



Agile Manifesto

15

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

Individuals and interactions

Working software

Customer collaboration

Responding to change

over processes and tools

over comprehensive documentation

over contract negotiation

over following a plan



Warning: Agile can be a buzzword

16



Agile and Waterfall have different 
philosophies about risk
• Waterfall says: "The project is too large and 

complex, and it will take months (or years!) to plan, 
so once we come up with the plan, that plan can 
not change"

• Agile says “The project is too large and complex, it 
is unlikely that we will know exactly what we need 
right now, and to some extent, we are inventing 
something new. We think that as we make it, we 
will figure it out as we go”

17



Agile Values Embrace Change
Compare to problems in waterfall:
• Requirements that become obsolete

• Don’t make detailed requirements until you need them
• Elaborate architectural designs never used

• Don’t design until you need
• Code that sits around not integrated and tested in 

production environment, eventually discarded
• Integrate and test continuously

• Documentation produced per requirements, but never 
read

• Don’t require documentation

18

Or only as much documentation 
as you really need.



Agile Practice: Everyone is Responsible for 
Quality
• “Collective ownership”
• Requirements (user stories) are developed 

collaboratively with customer, and are negotiable 
(INVEST qualities)

• Functional and non-functional correctness is checked 
on the cheap, and often

• Developers improve code anywhere in the system if 
they see the opportunity

• Many parallels with “Toyota Process System;” a variety 
of other software processes developed in the 90’s share 
these basic values

19



Agile requires a quality assurance process
• Multiple processes have to work together to ensure 

quality: 
• unit testing/TDD
• mix of unit tests & integration tests (we'll see more of this)
• code review
• continuous integration (also: watch for canaries
• continuous deployment (A/B, canaries, etc.)
• quality includes non-functional requirements (resource 

consumption, response time) or generally speaking extensibility, 
maintainability, etc. 

• Quality is everyone’s responsibility

20



Agile Empowers Workers to Improve Processes: 
Toyota Production System (1990’s)



Agile Processes are Iterative

22

Initial Concept

Operations

Acceptance 
Testing

and Delivery

Requirements 
and Iteration

Planning

Next Iteration

Design and
Implement 

Agile Process Model

Iterative Waterfall Model

Key Idea: Small Continuous Releases



Agile Processes Reduce Risk by Time Boxing
• Each “iteration” is called a “sprint”
• Each sprint has a fixed duration
• Scope of features in a sprint is determined 

by the team
• Key insight: planning might be a guess at 

first, but gets better with time
• More on agile planning & estimation in 

the next module

23



Agile Practice: Test Driven Development 
(TDD)

24

User story & 
conditions of 
satisfaction

1. Start here

2. Write a test

3. Write code

4. Refactor design

5. Strengthen 
Test

Failing 
Test

Passing 
Test

Passing 
Test, 

better 
design



Code Review is Agile Practice
• A code review is the process in which the author of 

some code is asked to explain it to their peers:
• What purpose the code has;
• How the code accomplishes this purpose;
• How the author is confident of this information,

• E.g., show results of running tests (CI results)

• A code review often concerns a code change 
(“diff”)



SE Research Question: Why Do Code Review?

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013



Agility and You

27

• In your project, you can display agility in some of the following ways:
• Renegotiate specs
• Reorder priorities
• Alter implementation strategy
• Improve team communication patterns

• If you are agile, you can adjust these things to deliver your product on 
time and get a good grade 



Learning Goals for this Lesson
• At the end of this lesson, you should be able to

• Know the basic characteristics of the waterfall software 
process model

• Be able to explain when the waterfall model is 
appropriate and when it is not

• Understand how the waterfall and agile models manage 
risk

• Be able to explain how agile process instill quality, 
including through test driven development

28


	CS 4530: Fundamentals of Software Engineering�Module 7.2: Software Development Processes
	Learning Goals for this Lesson
	Review:�How to make sure we are building the right thing
	Software Process: Code + Fix
	A brief history of software planning
	Software Process: Waterfall (~1970)
	Waterfall Model: Risk Assumptions
	Waterfall Process Improves on Code + Fix
	Waterfall Model adds process overhead
	Waterfall Model Reduces Risk by Preventing Change
	Waterfall Model: Applications
	Waterfall Model produced Wasted Work Product
	Iterative Process (~1980s) are Waterfall Variations
	The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile Manifesto
	Warning: Agile can be a buzzword
	Agile and Waterfall have different philosophies about risk
	Agile Values Embrace Change
	Agile Practice: Everyone is Responsible for Quality
	Agile requires a quality assurance process
	Agile Empowers Workers to Improve Processes: Toyota Production System (1990’s)
	Agile Processes are Iterative
	Agile Processes Reduce Risk by Time Boxing
	Agile Practice: Test Driven Development (TDD)
	Code Review is Agile Practice
	SE Research Question: Why Do Code Review?
	Agility and You
	Learning Goals for this Lesson

