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Learning Goals for this Lesson

* At the end of this lesson, you should be able to

 Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development
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Software Process: Code + Fix
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A brief history of software planning

NATO conference on Software Engineering + Outcomes

®Software was very inefficient
®Software was of low quality SOFTWARE ENGINEERING
®Software often did not meet requirements

®Projects were unmanageable and code difficult to maintain
®Software was never delivered

Report on a conference sponsored by the

s : . NATO SCIENCE COMMITTEE A Ca” to ac‘“on_ We
1 Garmisch, Germany, 7th to 11th October 1968
must study how to
build software

Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969




Software Process: Waterfall (~1970)
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Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication  Planning Modeling Cosntruction  Deployment



Waterfall Process Improves on Code + Fix
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* Measurable progress with risk contained in each
phase

* Possible to estimate each phase based on past
projects

* Division of labor: Natural segmentation between
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| Implementation
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Waterfall Model
adds process
overhead

Since formal quality assurance
happens at each phase, it’s
necessary to produce extremely
detailed...

* Requirements documents
e Design documents

e Source code with
documentation




Waterfall Model
Reduces Risk by
Preventing
Change

Traditional waterfall model: no way
to go back “up”




Waterfall Model: Applications

* What projects would this work well in?
* Projects with tremendous uncertainty
* Projects with long time-to-market

Projects that need extensive QA of requirements
and design

Projects for which the expense of the planning is
worth it
Classic examples: military/defense & ®06® &

* Warship that needs to have component interfaces last 80 &
years

e Spacecraft?

[ ]
Relative Cost to Fix Defect

11



Waterfall Model produced Wasted Work
Product

* Wasted productivity can occur through each
phase’s QA process:
* Requirements that become obsolete
* Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

* Documentation produced per requirements, but

Relative Cost to Fix Defect

never read S @ @Q/é
. . . X > Q 4 \\,C“
» What if we could eliminate that waste, and R
. Q& C Q
reduce the cost of defects later in S

development cycle?
* Example: with shorter time-to-market?
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Iterative Process (~1980s) are Waterfall

Variations
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The Agile Model Reduces Risk by Embracing
Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take

months (or years!) to plan, so once we come up with the
plan, that plan can not change”

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and complex, it is unlikely that
we will know exactly what we need right now, and to
some extent, we are inventing something new. We think
that as we make it, we will figure it out as we go”

* Reduce risk by limiting time on any one stage; then
reassess. (“time-boxing”)
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Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org
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Agile and Waterfall have different
philosophies about risk

* Waterfall says: "The project is too large and
complex, and it will take months (or years!) to plan,
so once we come up with the plan, that plan can
not change”

» Agile says “The project is too large and complex, it
is unlikely that we will know exactly what we need
right now, and to some extent, we are inventing
something new. We think that as we make it, we
will figure it out as we go”
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Agile Values Embrace Change

Compare to problems in waterfall:

* Requirements that become obsolete
* Don’t make detailed requirements until you need them

* Elaborate architectural designs never used
* Don’t design until you need

* Code that sits around not integrated and tested in
production environment, eventually discarded
* Integrate and test continuously

 Documentation produced per requirements, but never
read

* Don’t require documentation

Or only as much documentation
as you really need.
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Agile Practice: Everyone is Responsible for
Quality

* “Collective ownership”

* Requirements (user stories) are developed
collaboratively with customer, and are negotiable
(INVEST qualities)

* Functional and non-functional correctness is checked
on the cheap, and often

* Developers improve code anywhere in the system if
they see the opportunity

* Many parallels with “Toyota Process System;” a variety
of other software processes developed in the 90’s share
these basic values
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Agile requires a quality assurance process

* Multiple processes have to work together to ensure
quality:
* unit testing/TDD
* mix of unit tests & integration tests (we'll see more of this)
e code review
e continuous integration (also: watch for canaries
 continuous deployment (A/B, canaries, etc.)

e quality includes non-functional requirements (resource
consumption, response time) or generally speaking extensibility,
maintainability, etc.

* Quality is everyone’s responsibility
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Agile Empowers Workers to Improve Processes:
Toyota Production System (1990’s)




Agile Processes are Iterative

Agile Process Model

Initial Concept _l
Iterative Waterfall Model
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Agile Processes Reduce Risk by Time Boxing

* Each “iteration” is called a “sprint”

: : : Time Box Time Box
* Each sprint has a fixed duration Istlteration  2nd Iteration

Scope Scope

* Scope of features in a sprint is determined
by the team

* Key insight: planning might be a guess at
first, but gets better with time

* More on agile planning & estimation in
the next module
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Agile Practice: Test Driven Development
(TDD)

User story &
{1. Start here ] conditions of




Code Review is Agile Practice

* A code review is the process in which the author of
some code is asked to explain it to their peers:
* What purpose the code has;
* How the code accomplishes this purpose;

* How the author is confident of this information,
* E.g., show results of running tests (Cl results)

* A code review often concerns a code change
(“diff”)



SE Research Question: Why Do Code Review?

Ranked Motivations From Developers
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“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013



Agility and You

* In your project, you can display agility in some of the following ways:
* Renegotiate specs
e Reorder priorities
* Alter implementation strategy
* Improve team communication patterns

* If you are agile, you can adjust these things to deliver your product on
time and get a good grade ©
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Learning Goals for this Lesson

* At the end of this lesson, you should be able to

 Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development
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