CS 4530: Fundamentals of Software Engineering
Module 7.2: Software Development Processes

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license


https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

 Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development



Review:
How to make sure we are building the right thing

LIGLL

How the customer How the project How the analyst Huwﬂupmnrm Whmmummnﬂ
explainened it. leader understood it. designed it.
Requirements Planning &

Implementation

Analysis Design




Software Process: Code + Fix

Build First
Version

| Modify until - - - = =
) !

Customer satisfied

|
|—> Operations

!

Retirement




A brief history of software planning

NATO conference on Software Engineering + Outcomes

®Software was very inefficient
®Software was of low quality SOFTWARE ENGINEERING
®Software often did not meet requirements

®Projects were unmanageable and code difficult to maintain
®Software was never delivered

Report on a conference sponsored by the

s : . NATO SCIENCE COMMITTEE A Ca” to ac‘“on_ We
1 Garmisch, Germany, 7th to 11th October 1968
must study how to
build software

Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969




Software Process: Waterfall (~1970)

Requirements systematic, sequential approach
Validate . Quality Assurance at each phase before
Design continuing
Verify R

Implementation

Test _—

v

Operations

\ 4

Retirement




Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication  Planning Modeling Cosntruction  Deployment



Waterfall Process Improves on Code + Fix

Requirements

Validate

Design

Verify

* Measurable progress with risk contained in each
phase

* Possible to estimate each phase based on past
projects

* Division of labor: Natural segmentation between
phases

| Implementation

Test

Operations

Retirement




Waterfall Model
adds process
overhead

Since formal quality assurance
happens at each phase, it’s
necessary to produce extremely
detailed...

* Requirements documents
e Design documents

e Source code with
documentation




Waterfall Model
Reduces Risk by
Preventing
Change

Traditional waterfall model: no way
to go back “up”




Waterfall Model: Applications

* What projects would this work well in?
* Projects with tremendous uncertainty
* Projects with long time-to-market

Projects that need extensive QA of requirements
and design

Projects for which the expense of the planning is
worth it
Classic examples: military/defense & ®06® &

* Warship that needs to have component interfaces last 80 &
years

e Spacecraft?

[ ]
Relative Cost to Fix Defect

11



Waterfall Model produced Wasted Work
Product

* Wasted productivity can occur through each
phase’s QA process:
* Requirements that become obsolete
* Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

* Documentation produced per requirements, but

Relative Cost to Fix Defect

never read S @ @Q/é
. . . X > Q 4 \\,C“
» What if we could eliminate that waste, and R
. Q& C Q
reduce the cost of defects later in S

development cycle?
* Example: with shorter time-to-market?

12



Iterative Process (~1980s) are Waterfall

Variations

Initial Concept

-

Requirements
and Iteration
Planning

Next Iteration

A
1

Design and
Implement

Testing

Acceptance

and Delivery

Operations

13



The Agile Model Reduces Risk by Embracing
Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take

months (or years!) to plan, so once we come up with the
plan, that plan can not change”

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and complex, it is unlikely that
we will know exactly what we need right now, and to
some extent, we are inventing something new. We think
that as we make it, we will figure it out as we go”

* Reduce risk by limiting time on any one stage; then
reassess. (“time-boxing”)

14



Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

15



arning

Agile can be a buzzword

Deloitte.

SCsof 3Levels Porticlio WSIF Agle A
Agie Portiolio, Backiog pontfolic
Mgmt Frogram,

Og..n se Top down ren'e
+ Bottorn

The Ag i Ie Landsca pe v3 Developed by Christopher Webb

Rightshifting Management 3.0

e © e . ©

Marshall 4 Mindsets Tum  Delegation Kudos Meddiers
Madel upthe  Poker  Cards (change I
good card game)  desires

> | OO e e e e
tegic  ART a
heme G‘f:‘?e‘- Patter ing ecycle Delivery Do ol et il st
et
AMEWOK

SDCA) P g S— V8

arafes

O

Moving
Maotivators

Contract
Game

am Yison

Hypothesis  Vaiue
Idea - Statemen:
collaporatios

Braingtonming

Mapging

Change
Canvas

Vision

Feasiviity  ©role!

Assessrneny BprGACh
Guesyenn

[4

u Trade off arpam—
: Sicers |

Seice | Toarts Relrospech e R e
e map o pres oteniay Business EPIC C... re Theoey ¥
et o s coaching {crg, team, tech) Shippatie Produ i O Y Model !

T Loop Srvmur -
grams Diagrams Viable Minimum ADKAR Survey Poissan,  Plant Types YActionaie B
Product | Viable Crange % ctionat Sigma
[ _Cymefin_ ] ;"’-H‘O e [E—
harter
System NFR ~ w 5
i @] D s e sss
page Object J Domain il Bufler] 5 Whys 8 Wastes Kaizen Kaizen POy
o O anqui rernent Relatenal g Diagrarn Eig_ml 'J:;'n' srst vtz (Deming cycie)
precedes dat Area Mapding odelin hco.'y of
o Constraints

Persghectiv
empatny( ) Plamning  Sto

daps

phares ()

Business Dynamic System Development Method (DSDM)

Archity

Catual 5 Dystunctions of tearr

ARA] B me; sar wa LA T

system

stream  Voice of = N—
ng  Customer | Product Development (FLOW) |
Decisign  Product Personas:
Tree Wision
felevator
pitch)
O) O) Frature
vEr

Context Relational

O w;'mf mf.m

Slevelsof JTModel Sipole (CRC Cards Sustadable Mewphor Spkes N Teanr288

Parking  Story
Lot~ Mapping

O 3
= Sroduction Testing

o Auto-scale & Heal

.-'cau'u‘ giing
() resure Togging

g 1. Feedsack fSmall
Rotation _31[;:‘? releases
Custorr
Agile Releate
& O Trans (ART)
: 15 ¥
.' . . . . Tes' f-«opcwe Source CO"'rJF‘.S et § Release
sing  Code  Integration Tran
Guided Defne tanect Doblin's 10 Deves et g e o g pe el ] . O Mgrrit Engineer
our - Success werkshops  types of :
innavation - Marick's Test Driven Contruous )
Delivery = Test  Developmen Deployment =
Document  Rets thn c Wiy elease on
cortrol PaciC) REVert  REfoctonng || prerecyutres (o i Chat Y ) CRtedores brvef
Map Foview Automati ormaled e
. {Showcase]

i ! At '\‘3‘(“'\.5‘10:

SCoW ( ) ( ) ( ) Reflectve I

ependent 5 Mikado mmprovement

God Nawoty Focusing  Dependency
Steps Map

“"“O =0

241 View v
architecture Desgn

franching
Strategy

romated Test

O O, )

craf Code Coverage
Crarnotic Focus Scale Walkng  Delphs  Information  Exploratory
Communication Re-aschi Perod  method by Skele ation Raciators 360 degree  Arc )
e} colas T
(2he} colgur G eviews selection Mack Chiecs

er

16



Agile and Waterfall have different
philosophies about risk

* Waterfall says: "The project is too large and
complex, and it will take months (or years!) to plan,
so once we come up with the plan, that plan can
not change”

» Agile says “The project is too large and complex, it
is unlikely that we will know exactly what we need
right now, and to some extent, we are inventing
something new. We think that as we make it, we
will figure it out as we go”

17



Agile Values Embrace Change

Compare to problems in waterfall:

* Requirements that become obsolete
* Don’t make detailed requirements until you need them

* Elaborate architectural designs never used
* Don’t design until you need

* Code that sits around not integrated and tested in
production environment, eventually discarded
* Integrate and test continuously

 Documentation produced per requirements, but never
read

* Don’t require documentation

Or only as much documentation
as you really need.

18



Agile Practice: Everyone is Responsible for
Quality

* “Collective ownership”

* Requirements (user stories) are developed
collaboratively with customer, and are negotiable
(INVEST qualities)

* Functional and non-functional correctness is checked
on the cheap, and often

* Developers improve code anywhere in the system if
they see the opportunity

* Many parallels with “Toyota Process System;” a variety
of other software processes developed in the 90’s share
these basic values

19



Agile requires a quality assurance process

* Multiple processes have to work together to ensure
quality:
* unit testing/TDD
* mix of unit tests & integration tests (we'll see more of this)
e code review
e continuous integration (also: watch for canaries
 continuous deployment (A/B, canaries, etc.)

e quality includes non-functional requirements (resource
consumption, response time) or generally speaking extensibility,
maintainability, etc.

* Quality is everyone’s responsibility

20



Agile Empowers Workers to Improve Processes:
Toyota Production System (1990’s)




Agile Processes are Iterative

Agile Process Model

Initial Concept _l
Iterative Waterfall Model

Requirements
and Iteration
Planning

--------------------------- Next Iteration

Design and
Implement

7y

Key Idea: Small Continuous Releases

Acceptance
Testing
and Delivery

Y

Operations

22



Agile Processes Reduce Risk by Time Boxing

* Each “iteration” is called a “sprint”

: : : Time Box Time Box
* Each sprint has a fixed duration Istlteration  2nd Iteration

Scope Scope

* Scope of features in a sprint is determined
by the team

* Key insight: planning might be a guess at
first, but gets better with time

* More on agile planning & estimation in
the next module

23



Agile Practice: Test Driven Development
(TDD)

User story &
{1. Start here ] conditions of




Code Review is Agile Practice

* A code review is the process in which the author of
some code is asked to explain it to their peers:
* What purpose the code has;
* How the code accomplishes this purpose;

* How the author is confident of this information,
* E.g., show results of running tests (Cl results)

* A code review often concerns a code change
(“diff”)



SE Research Question: Why Do Code Review?

Ranked Motivations From Developers

Top [ ] Second L] Third N

|
| | [ ]
Code Improvement | | _
Alternative Solutions | | _
|
|
|

Finding defects

Knowledge Transfer

Team Awareness

]
| [ ]
Improving Dev Process -
Share Code Ownership El:-
Avoid Build Breaks | [ | [N
Track Rationale D:-
Team Assessment D:-
0 200 400 600
Responses

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013



Agility and You

* In your project, you can display agility in some of the following ways:
* Renegotiate specs
e Reorder priorities
* Alter implementation strategy
* Improve team communication patterns

* If you are agile, you can adjust these things to deliver your product on
time and get a good grade ©

27



Learning Goals for this Lesson

* At the end of this lesson, you should be able to

 Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development

28



	CS 4530: Fundamentals of Software Engineering�Module 7.2: Software Development Processes
	Learning Goals for this Lesson
	Review:�How to make sure we are building the right thing
	Software Process: Code + Fix
	A brief history of software planning
	Software Process: Waterfall (~1970)
	Waterfall Model: Risk Assumptions
	Waterfall Process Improves on Code + Fix
	Waterfall Model adds process overhead
	Waterfall Model Reduces Risk by Preventing Change
	Waterfall Model: Applications
	Waterfall Model produced Wasted Work Product
	Iterative Process (~1980s) are Waterfall Variations
	The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile Manifesto
	Warning: Agile can be a buzzword
	Agile and Waterfall have different philosophies about risk
	Agile Values Embrace Change
	Agile Practice: Everyone is Responsible for Quality
	Agile requires a quality assurance process
	Agile Empowers Workers to Improve Processes: Toyota Production System (1990’s)
	Agile Processes are Iterative
	Agile Processes Reduce Risk by Time Boxing
	Agile Practice: Test Driven Development (TDD)
	Code Review is Agile Practice
	SE Research Question: Why Do Code Review?
	Agility and You
	Learning Goals for this Lesson

